Uva 729 The Hamming Distance Problem

Oct 28, 2009

Problem: 729.The Hamming Distance Problem

The Hamming distance between two strings of bits (binary integers) is the number of corresponding bit positions that differ. This can be found by using XOR on corresponding bits or equivalently, by adding corresponding bits (base 2) without a carry. For example, in the two bit strings that follow:
A 0 1 0 0 1 0 1 0 0 0
 B 1 1 0 1 0 1 0 1 0 0 
A XOR B = 1 0 0 1 1 1 1 1 0 0
The Hamming distance (H) between these 10-bit strings is 6, the number of 1's in the XOR string.


Input 
Input consists of several datasets. The first line of the input contains the number of datasets, and it's followed by a blank line. Each dataset contains N, the length of the bit strings and H, the Hamming dis
tance, on the same line. There is a blank line between test cases.
Output
For each dataset print a list of all possible bit strings of length N that are Hamming distance H from the bit string containing all 0's (origin). That is, all bit strings of length N with exactly H 1's printed in ascending lexicographical order.
The number of such bit strings is equal to the combinatorial symbol C(N,H). This is the number of possible combinations of N-H zeros and H ones. It is equal to
This number can be very large. The program should work for
Print a blank line between datasets.
Sample Input
1

4 2

Sample Output

0011
0101
0110
1001
1010
1100



Description of the Solution:


1. use STL function to count 1 in a number by following way:
2. then if n<=h , convert given number into binary and print

Code In C/C++:

No comments:

Post a Comment